4 research outputs found

    Literature Review of the Recent Trends and Applications in various Fuzzy Rule based systems

    Full text link
    Fuzzy rule based systems (FRBSs) is a rule-based system which uses linguistic fuzzy variables as antecedents and consequent to represent human understandable knowledge. They have been applied to various applications and areas throughout the soft computing literature. However, FRBSs suffers from many drawbacks such as uncertainty representation, high number of rules, interpretability loss, high computational time for learning etc. To overcome these issues with FRBSs, there exists many extensions of FRBSs. This paper presents an overview and literature review of recent trends on various types and prominent areas of fuzzy systems (FRBSs) namely genetic fuzzy system (GFS), hierarchical fuzzy system (HFS), neuro fuzzy system (NFS), evolving fuzzy system (eFS), FRBSs for big data, FRBSs for imbalanced data, interpretability in FRBSs and FRBSs which use cluster centroids as fuzzy rules. The review is for years 2010-2021. This paper also highlights important contributions, publication statistics and current trends in the field. The paper also addresses several open research areas which need further attention from the FRBSs research community.Comment: 49 pages, Accepted for publication in ijf

    Performance Analysis of LEO Satellite-Based IoT Networks in the Presence of Interference

    Full text link
    This paper explores a star-of-star topology for an internet-of-things (IoT) network using mega low Earth orbit constellations where the IoT users broadcast their sensed information to multiple satellites simultaneously over a shared channel. The satellites use amplify-and-forward relaying to forward the received signal to the ground station (GS), which then combines them coherently using maximal ratio combining. A comprehensive outage probability (OP) analysis is performed for the presented topology. Stochastic geometry is used to model the random locations of satellites, thus making the analysis general and independent of any constellation. The satellites are assumed to be visible if their elevation angle is greater than a threshold, called a mask angle. Statistical characteristics of the range and the number of visible satellites are derived for a given mask angle. Successive interference cancellation (SIC) and capture model (CM)-based decoding schemes are analyzed at the GS to mitigate interference effects. The average OP for the CM-based scheme, and the OP of the best user for the SIC scheme are derived analytically. Simulation results are presented that corroborate the derived analytical expressions. Moreover, insights on the effect of various system parameters like mask angle, altitude, number of satellites and decoding order are also presented. The results demonstrate that the explored topology can achieve the desired OP by leveraging the benefits of multiple satellites. Thus, this topology is an attractive choice for satellite-based IoT networks as it can facilitate burst transmissions without coordination among the IoT users.Comment: Submitted to IEEE IoT Journa

    Fair Differentially Private Federated Learning Framework

    Full text link
    Federated learning (FL) is a distributed machine learning strategy that enables participants to collaborate and train a shared model without sharing their individual datasets. Privacy and fairness are crucial considerations in FL. While FL promotes privacy by minimizing the amount of user data stored on central servers, it still poses privacy risks that need to be addressed. Industry standards such as differential privacy, secure multi-party computation, homomorphic encryption, and secure aggregation protocols are followed to ensure privacy in FL. Fairness is also a critical issue in FL, as models can inherit biases present in local datasets, leading to unfair predictions. Balancing privacy and fairness in FL is a challenge, as privacy requires protecting user data while fairness requires representative training data. This paper presents a "Fair Differentially Private Federated Learning Framework" that addresses the challenges of generating a fair global model without validation data and creating a globally private differential model. The framework employs clipping techniques for biased model updates and Gaussian mechanisms for differential privacy. The paper also reviews related works on privacy and fairness in FL, highlighting recent advancements and approaches to mitigate bias and ensure privacy. Achieving privacy and fairness in FL requires careful consideration of specific contexts and requirements, taking into account the latest developments in industry standards and techniques.Comment: Paper report for WASP module
    corecore